This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

TRANSITION METAL COMPLEXES WITH HYDRAZIDES AND HYDRAZONES. PART 8^{1}. X-RAY CRYSTAL STRUCTURE OF A CATENA-POLYBROMO (ACETONE-1-NAPHTHOYLHYDRAZONE) COPPER(II)-COPPER(I) COMPLEX

 ${ }^{a}$ Institute of Physics and Chemistry, Faculty of Sciences, University of Novi Sad, Novi Sad, Yugoslavia ${ }^{\mathrm{b}}$ Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest, Hungary ${ }^{\text {c }}$ Faculty of Chemistry, University of Uzhgorod, Ukraine

To cite this Article Kapor, Agneš, Ribár, Béla, Leovac, Vukadin M. , Argay, Gyula , Kálmán, Alajos and Chundak, Stepan Yu.(1996) 'TRANSITION METAL COMPLEXES WITH HYDRAZIDES AND HYDRAZONES. PART 8 ${ }^{1}$. X-RAY CRYSTAL STRUCTURE OF A CATENA-POLYBROMO (ACETONE-1-NAPHTHOYLHYDRAZONE) COPPER(II)-COPPER(I) COMPLEX', Journal of Coordination Chemistry, 38: 1, 139-144
To link to this Article: DOI: 10.1080/00958979608022699
URL: http://dx.doi.org/10.1080/00958979608022699

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


NOTE

TRANSITION METAL COMPLEXES WITH HYDRAZIDES AND HYDRAZONES. PART 8^{1}. X-RAY CRYSTAL STRUCTURE OF A CATENA-POLYBROMO (ACETONE-1-NAPHTHOYLHYDRAZONE) COPPER(II)-COPPER(I) COMPLEX

AGNEŠ KAPOR*, BÉLA RIBÁR, VUKADIN M. LEOVAC
Instilute of Physics and Chemistry, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad. Yugoslavia

GYULA ARGAY, ALAJOS KÁLMÁN
Central Rescarch Institute for Chemistry, Hungarian Academy of Sciences, P.O. Box 17, Budapest 114. H-1525, Hungary
and STEPAN YU. CHUNDAK
Faculty of Chemistry, University of Uzhgorod, Ukraine

(Received June 13, 1995)

The title compound $\left[\mathrm{Cu}_{3} \mathrm{Br}_{4} \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}\right]$ is a type of polymeric three-centre octahedral-trigonal planar coordination complex. The copper(II) atom located at a centre of symmetry is six-coordinate with two bidentate (N3, OI) ligands of acetone-1-naphthoylhydrazone forming the equatorial plane and two bromine ions in axial positions ($\mathrm{Cul}-\mathrm{Br} 1=2.946(1) \AA$). The ligands are in trans positions. The $\mathrm{Cu}(\mathrm{I})$ atoms are in trigonal planar coordination by two bridging Br^{-}ions $(\mathrm{Cu} 2-\mathrm{Br} 2=2.412(1) \AA$. $\mathrm{Cu} 2-\mathrm{Br} 2^{*}=2.407(2) \AA$) which connect two $\mathrm{Cu}(\mathrm{I})$ atoms and a third bromine ion shared with the octahedral $\mathrm{Cu}(\mathrm{II})$ ion $(\mathrm{Cu} 2-\mathrm{Brl}=2.304(1) \AA)$. The arrangement forms an infinite chain along the b axis.

KEYWORDS: acctone-1-naphthoylhydrazone, bromide, copper, polymer, X-ray structurc

INTRODUCTION

Within the framework of a systematic study of transition metal complexes with hydrazides and hydrazones ${ }^{1-9}$ we present here the structure of a newly synthesized

[^0]polymeric copper(II)-copper(I) complex with acetone-1-naphthoylhydrazone (Scheme 1).

Scheme 1

EXPERIMENTAL

Dark green, single crystals of the complex were obtained by slow evaporation of an $\mathrm{EtOH} / \mathrm{Me}_{2} \mathrm{CO}(6: 4 \mathrm{v} / \mathrm{v})$ solution of CuBr_{2} and acetone-1-naphthoylhydrazone at mol ratio 1:1. A single crystal of dimensions $0.24 \times 0.20 \times 0.12 \mathrm{~mm}$ was mounted on an Enraf-Nonius turbo CAD-4 diffractometer equipped with a graphite monochromator. Intensities were recorded with MoK_{α} radiation ($\lambda=0.71070 \AA$) using the $\omega-2 \theta$ scan technique in the range $2.40<\theta<32.0^{\circ}$. Three standard reflections were monitored every hour; no decay correction was applied. Cell constants were determined by least-squares refinement of diffractometer angles for 25 automatically centred reflections collected in the range $15.96<\theta<16.89^{\circ}$.

Data were corrected for Lorentz and polarization effects. Computations were carried out for data collection, cell refinement and data reduction, with the MoIEN package. ${ }^{10}$ The structure was solved by direct methods with SHELXS86, ${ }^{11}$ and the program used to refine the structure was SHELX76. ${ }^{12}$ Positions of hydrogen atoms were generated from assumed geometry, checked in a $\Delta \rho$ map and refined isotropically. For methyl hydrogens and the nitrogen H 2 atom a common isotropic displacement parameter was calculated ($U=0.081(9) \AA^{2}$). A residual maximum $\left(\Delta \rho_{\max }=1.81 \mathrm{e}^{-3}\right)$ appears in the vicinity of Br 1 and probably corresponds to the position of a free electron pair. Atomic scattering factors for $\mathrm{Cu}^{2+}, \mathrm{Cu}^{+}$and Br^{-} were taken from International Tables for X-ray Crystallography (1974), Vol. IV, Table 2.2B. ${ }^{13}$ Software used to prepare the material for publication was CSU ${ }^{14}$ and, for molecular graphics, PLUTO. ${ }^{15}$ All calculations were carried out on a PC/AT computer.

Crystal data and refinement parameters are given in Table I. Fractional atomic coordinates and their equivalent isotropic displacement parameter, are given in

Table I Summary of crystal data, intensity collection and structure refinement for the complex.

Crystal data	
Chemical formula	$1 / 2\left[\mathrm{Cu}_{3} \mathrm{Br}_{4} \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}\right]$
Formula weight	481.40
Crystal system	triclinic
Space group	$P \overline{1}$
Cell constants	$a=7.510(1) \AA$
	$b=9.700(1) \AA$
	$c=11.570(1) \AA$
	$\alpha=99.38(1)^{\circ}$
	$\beta=106.20(1)^{\circ}$
Z	$\gamma=91.49(1)^{\circ}$
$F(000)$	$V=796.4(2) \AA^{3}$
$D x$	2
Radiation	492
μ	$2.007 \mathrm{Mgm}^{-3}$
Measurement tempcrature	$\mathrm{MoK},(\lambda=0.71073 \AA)$
Data collection	$6.994 \mathrm{~mm}^{-1}$
Min. and Max. transmission values	294 K
No. of reflections measured	
No. of independent reflections	T
No. of observed reflections	5788
Criterions for observed reflections	5505
$R_{\text {int }}$	2954
Max. value of θ	$F>3 \sigma(F)$
Range of $h, k . l$	0.019
	31.99°
Refinement	$\mathrm{h}=-11 \rightarrow 11$
Final R	$\mathrm{k}=0 \rightarrow 14$
R	$l=-17 \rightarrow 16$
Weight scheme	

Table II. Selected bonding parameters are listed in Table III. A perspective view of the molecule with atom numbering for non-hydrogen atoms is shown in Figure 1.

RESULTS AND DISCUSSION

Structure of $\left[\mathrm{Cu}_{3} \mathrm{Br}_{4} \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}\right]$
As depicted in Figure 1, the $\mathrm{Cu}(\mathrm{II})$ cation fixed deliberately at the unit cell origin is surrounded by two bidentate 1-naphthoylhydrazone ligands forming an elongated coordination octahedron (Table III) together with two, also centre-of-symmetry related Br^{-}ions. The $\mathrm{Cu} 1-\mathrm{Brl}$ distance is $2.946(1) \AA$ and is similar to those observed by Willett and coworkers ${ }^{16,17}$ while the two symmetry-independent bonds, $\mathrm{Cu}-\mathrm{Ol}=1.923(4)$ and $\mathrm{Cul}-\mathrm{N} 3=2.080(4) \AA$ are shorter but common for equatorial ligand positions. ${ }^{18,19.20}$ Both Br^{-}ions are coordinated subsequently to $\mathrm{Cu}(\mathrm{I})$ cations with a much shorter $\mathrm{Cu} 2-\mathrm{Br} 2$ distance of $2.304(1) \AA$. The $\mathrm{Cu} 1-\mathrm{Br} 1-$ Cu 2 angle is $93.2(1)^{\circ}$. Each $\mathrm{Cu}(\mathrm{I})$ cation is on a plane $(\Delta=0.0026 \AA)$ formed by three Br^{-}anions in a triangular array. Two of these are the centre of symmetry

Table II Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ with e.s.d."s in parentheses for the non-hydrogen atoms; $U_{e \mathrm{eq}}=1 / 3 \Sigma_{i} \Sigma_{1} U_{i j} a^{*}{ }_{i} a^{*} ; a_{1} a_{i}$.

Atom	x / a	y / b		z / c
$U_{\text {eq }}$				
$\mathrm{Cu} 1^{*}$	$0.0000(0)$	$0.0000(0)$	$0.0000(0)$	$0.0402(2)$
Cu 2	$-0.1118(1)$	$0.3758(1)$	$-0.0421(1)$	$0.0606(2)$
Br 1	$-0.2992(1)$	$0.1701(1)$	$-0.1104(1)$	$0.0538(2)$
Br 2	$-0.0679(1)$	$0.5232(1)$	$0.1544(1)$	$0.0604(2)$
O 1	$0.0403(5)$	$-0.0366(4)$	$-0.1588(3)$	$0.0430(9)$
N 2	$0.2594(6)$	$0.1393(5)$	$-0.0831(4)$	$0.0378(11)$
N 3	$0.2170(5)$	$0.1510(4)$	$0.0290(3)$	$0.0326(10)$
Cl	$0.1629(7)$	$0.0410(5)$	$-0.1744(4)$	$0.0344(12)$
C 2	$0.3103(7)$	$0.2470(5)$	$0.1161(5)$	$0.0351(12)$
C 3	$0.4446(9)$	$0.3538(7)$	$0.0999(6)$	$0.0487(15)$
C 4	$0.2875(9)$	$0.2538(7)$	$0.2406(5)$	$0.0484(16)$
C 5	$0.2068(6)$	$0.0289(6)$	$-0.2929(4)$	$0.0364(13)$
C 6	$0.2364(8)$	$0.1504(7)$	$-0.3331(5)$	$0.0431(15)$
C7	$0.2673(8)$	$0.14647)$	$-0.4481(6)$	$0.0541(17)$
C8	$0.2708(8)$	$0.0205(7)$	$-0.5187(5)$	$0.0500(18)$
C9	$0.2418(7)$	$-0.1064(6)$	$-0.4812(5)$	$0.0422(15)$
C10	$0.2465(9)$	$-0.23818)$	$-0.5544(5)$	$0.0590(20)$
C11	$0.2176(10)$	$-0.35738)$	$-0.5179(6)$	$0.0610(18)$
C12	$0.1867(9)$	$-0.3569(7)$	$-0.4041(6)$	$0.0527(16)$
C13	$0.1813(8)$	$-0.23436)$	$-0.3296(5)$	$0.0428(14)$
C14	$0.2078(6)$	$-0.1040(6)$	$-0.3651(4)$	$0.0349(13)$

* Occupancy $=0.50$.

Table III Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses.

$\mathrm{Cu} 1-\mathrm{Br} 1$	2.946 (1)	$\mathrm{Ol}-\mathrm{Cul}-\mathrm{Br}$	85.7(1)
Cul - N3	2.080(4)	N3-Cul-Brl	96.1(1)
Cul-O1	1.923(4)	Ol - Cul - N 3	81.0(2)
Cul-N2	2.807(5)	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3^{*}$	99.0(2)
Cul-Cl	$2.709(6)$	O1-Cul-Br1*	94.3(1)
$\mathrm{Cul}-\mathrm{Cu} 2$	3.839(1)	$\mathrm{N} 3-\mathrm{Cul}-\mathrm{Br} 1^{*}$	83.9(1)
$\mathrm{Cu} 2-\mathrm{Cu}{ }^{* *}$	2.773(1)	$\mathrm{Cu} 1-\mathrm{Brl}-\mathrm{Cu} 2$	93.2(1)
$\mathrm{Cu} 2-\mathrm{Br} 2^{* *}$	$2.407(2)$	$\mathrm{Br} 2-\mathrm{Cu} 2-\mathrm{Br} 1$	124.6(1)
$\mathrm{Cu} 2-\mathrm{Br} 1$	$2.304(1)$	$\mathrm{Br} 2-\mathrm{Cu} 2-\mathrm{Br} 2^{* *}$	$109.8(1)$
$\mathrm{Cu} 2-\mathrm{Br} 2$	$2.412(1)$	Br1-Cu2-Br2**	125.6(1)
O 1 Cl	1.244(7)	C6 C7	1.408(10)
N3 N2	1.407(6)	C7 C8	$1.359(9)$
N3 C2	1.281(5)	C 8 C9	$1.401(9)$
N 2 C 1	1.326(6)	C 9 C 10	$1.420(9)$
$\mathrm{Cl} \quad \mathrm{C} 5$	$1.485(7)$	$\mathrm{C} 9 \quad \mathrm{C} 14$	$1.432(8)$
C2 C3	1.497(9)	$\mathrm{ClO} \mathrm{Cl1}$	$1.327(11)$
C 2 C 4	1.489(9)	$\mathrm{Cl} \quad \mathrm{Cl2}$	$1.399(11)$
C5 C6	1.370(9)	C12 C13	1.359(9)
C5 C14	$1.419(7)$	$\mathrm{Cl3}$ C14	$1.417(9)$

* Symmetry related atoms at $-x,-y,-z$.
** At $-x, 1-y ;-2$.
($0,1 / 2,0$) related Br 2 and $\mathrm{Br} 2^{*}$ ions separated almost equally (2.412(1) and $2.407(2) \AA$) from $\mathrm{Cu}(\mathrm{I})$. They and the centre of symmetry-related Cu 2 and $\mathrm{Cu} 2^{*}$ cations close a quadrilateral with $\mathrm{Br} 2-\mathrm{Cu} 2-\mathrm{Br} 2^{*}=109.8(1)^{\circ}$. The $\mathrm{Cu} 2-\mathrm{Cu} 2^{*}$ distance is $2.773(1) \AA$. This motif is then continued by a second $\mathrm{Cu} 2^{*}-\mathrm{Br} 2^{*}$ bond (Figure 1), and also on, forming a zig-zag chain along the b axis.

Figure 1 Perspective view of the molecule showing atomic numbering. The H atoms are shown but not labelled.

The geometry of the acetone-1-naphthoylhydrazone ligand is regular. The short N3-C2 distance ($1.281(5) \AA$) indicates a localized double bond, while N2-N3 and $\mathrm{N} 2-\mathrm{C} 1$ bond lengths of $1.407(6)$ and $1.326(6) \AA$ support the location of the H 2 atom in a difference Fourier map followed by its refinement in isotropic mode ($\mathrm{N} 2-\mathrm{H} 2=$ $0.70(7) \AA$). Partial delocalization of π-electrons is indicated by the $\mathrm{O} 1-\mathrm{Cl}$ and C1-N2 distances of $1.244(7)$ and $1.326(6) \AA$, respectively.

Within molecules related by the centre of symmetry, there occurs a network of intramolecular and intermolecular hydrogen bonds of the type C13-H13...O1 $\left(2.957(7) \AA, 123.4(4)^{\circ}\right)$ and $\mathrm{C} 4-\mathrm{H} 4 \mathrm{C} . . \mathrm{O} 1^{*}\left(3.029(7) \AA, 149.9(58)^{\circ} ;{ }^{*}-x,-y,-z\right)$, respectively. The infinite chains along b (Figure 2) are connected by weak van der

Figure 2 Packing diagram viewed down the c axis.

Waals contacts ($\left.\mathrm{Br} 1 \ldots \mathrm{~N} 2^{*}=3.427(5) \AA, \mathrm{Br} 1 \ldots . \mathrm{H} 2^{*}=2.829(72) \AA \AA^{*}{ }^{*}-1+x, y, z\right)$ and form layers parallel to the $a b$ plane.

SUPPLEMENTARY MATERIAL

Lists of structure factors, anisotropic thermal parameters for non-hydrogen atoms, positional and temperature parameters for hydrogen atoms, bond lengths and angles and mean planes are available from Agneš Kapor upon request.

Acknowledgements

This work was supported in part by the Serbian Ministry of Science. The X-ray diffraction measurements and calculations were made in Budapest sponsored by Hungarian Research Fund Grant No OTKA 1805.

References

1. Part 7 is I. Ivanovic, K. Andjelkovic, V.M. Leovac, and D. Minic, J. Thermal Anal., submitted for publication.
2. V.M. Leovac, L.J. Bjelica, Lj.S. Jovanovic, and S.Yu. Chundak, Polyhedron, 5, 983 (1986).
3. V.M. Leovac, D.Z. Obadovic, A.F. Petrovic and S.Yu Chundak, J. Thermal Anal., 34, 1263 (1988).
4. V.M. Leovac, D.Z̆. Obadović, S.Yu. Chundak, and F. Skuban Thermochim. Acta, 210, 193 (1992).
5. V.M. Leovac, I., Ivanovic, K. Andjelkovic and S. Mitrovski, J. Serb. Chem. Soc., 60, 1 (1995).
6. S. Yu. Chundak, V.M. Leovac, D.Z. Obadovic and D.M. Petrovic, Transition Met. Chem., 11, 308 (1986).
7. S.Yu. Chundak, V.M. Leovac and L.J. Bjelica, Monatsh. Chem., 118, 923 (1987).
8. R. Fazlic, V. Divjakovic, V.M. Leovac and S.Yu. Chudnak, Acta Cyrst., C47, 714 (1991).
9. R. Herak, B. Prelesnik, V.M. Leovac and S.Yu. Chudnak, Acta Cryst., C47, 1408 (1991).
10. Enraf-Nonius MolEN Structure Determination System, (Enraf-Nonius, Delft, The Netherlands, 1990).
11. G.M. Sheldrick, SHELXS86 Program for the solution of crystal structure, (University of Gottingen, Germany, 1985).
12. G.M. Sheldrick, SHEL X 76 Program for crystal structure determination. (University of Cambridge, England, 1976).
13. D.T. Cromer, and J.T. Waber, International Tables for X-ray Crystallography, Vol IV, Table 2.2B, Kynoch Press, Birmingham, (1974); present distributor Kluwer Academic Publishers, Dordrecht.
14. I. Vickovic, CSU, Crystal Structure Utility Computer Program, (University of Zagreb, Croatia, 1988).
15. W.D.S. Motherwell, and W. Clegg, PLUTO. Program for Plotting Molecular and Crystal Structures, (University of Cambridge, England, 1978).
16. K. Murray, and R.D. Willett, Acta Cryst., C47, 2660 (1991).
17. H. Place and R. Willett, Acta Cryst., C50, 862 (1994).
18. T.H. Tahirov, T.-H. Lu, K. Shu and Ch,-S. Chung, Acta Cryst., C50, 518 (1994).
19. T.H. Tahirov, T.-H. Lu, K. Shu and Ch, -S. Chung, Acta Cryst., C50, 710 (1994).
20. Y. Agnus, M. Labarelle, R. Louis and B. Metz, Acta Cryst., C50, 536 (1994).

[^0]: * Author for correspondence.

